1st class Dr. Rasim Azeez

Simplify the Boolean Function using Karnaugh Map (K-Map)

The second method that used to simplify the Boolean function is the Karnaugh map. K-map basically deals with the technique of inserting the values of the output variable in cells within a rectangle or square grid according to a definite pattern. The number of cells in the K-map is determined by the number of input variables and is mathematically expressed as two raised to the power of the number of input variables, i.e., 2^n , where the number of input variables is n.

Thus, to simplify a logical expression with **two inputs**, we require a K-map with $(2^2 = 4)$ cells. A **four-input** logical expression would lead to a $(2^4 = 16)$ celled-K-map, and so on.

Advantages of K-Maps

- 1- The K-map simplification technique is simpler and less error-prone compared to the method of solving the logical expressions using Boolean laws.
- 2- It prevents the need to remember each and every Boolean algebraic theorem.
- 3- It involves fewer steps than the algebraic minimization technique to arrive at a simplified expression.
- 4- K-map simplification technique always results in minimum expression if carried out properly.

Disadvantages of K-Maps

- 1- As the number of variables in the logical expression increases, the K-map simplification process becomes complicated.
- 2- The minimum logical expression arrived by using the K-map simplification procedure may or may not be unique depending on the choices made while forming the groups

1st class Dr. Rasim Azeez

K-mapping & Minimization Steps

Step 1: generate K-map based on the number of input variables n

☐ Put a 1 in all specified minterms

 \square Put a 0 in all other boxes (optional)

Step 2: group all adjacent 1s without including any 0s. All groups must be rectangular and contain a "power-of-2" number of 1s 1, 2, 4, 8, 16, 32, ...

Step 3: define product terms using variables common to all minterms in group

Step 4: sum all essential groups plus a minimal set of remaining groups to obtain a minimum SOP.

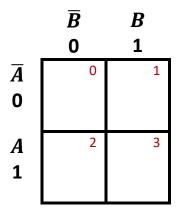
1- Two variables K-Map

Number of input variables are 2

Hence the number of squares $= 2^n = 2^2 = 4$

Inputs	Decimal	Min	terms	Output
АВ	equivalent			F
0 0	0	m_0	$\overline{A}\overline{B}$	
0 1	1	m_1	$\overline{A}B$	
1 0	2	m_2	$A\overline{B}$	
1 1	3	m ₃	AB	

And K-Map of two variables is:



Example: simplify the Boolean expression by using K-Map

$$F = \overline{A}B + AB$$

Solution:

Number of input variables are 2

Hence the number of squares $= 2^n = 2^2 = 4$

$$\begin{array}{c|ccccc}
 & \overline{B} & B & \\
 & 0 & 1 & \\
\hline
A & 0 & 1 & \\
A & 2 & 3 & \\
1 & 0 & 1 & \\
\end{array}$$

$$F = B$$

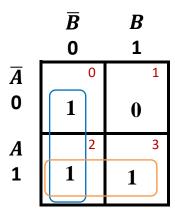
Example: simplify the Boolean expression by using K-Map

$$F(A,B) = \sum m(2,0,3)$$

Solution:

Number of input variables are 2

Hence the number of squares $= 2^n = 2^2 = 4$



$$F(A,B) = \overline{B} + A$$

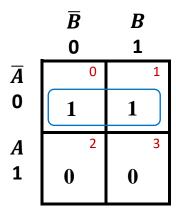
Example: simplify the Boolean expression by using K-Map

$$F = \overline{A}B + \overline{A}\overline{B}$$

Solution:

Number of input variables are 2

Hence the number of squares $= 2^n = 2^2 = 4$



$$F = \overline{A}$$

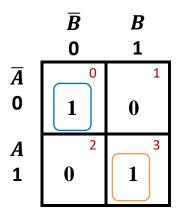
Example: simplify the Boolean expression by using K-Map

$$F(A,B) = \sum m(0,3)$$

Solution:

Number of input variables are 2

Hence the number of squares $= 2^n = 2^2 = 4$



$$F(A,B) = \sum m(0,3) = \overline{A}\overline{B} + AB$$

2- Three Variables K-Map

Number of input variables are 3 Hence the number of squares = $2^n = 2^3 = 8$

The truth table is

Inputs	Decimal	Mir	nterms	Output
АВС	equivalent			F
0 0 0	0	m_0	$\overline{A}\overline{B}\overline{C}$	
0 0 1	1	m_1	$\overline{A}\overline{B}C$	
0 1 0	2	m_2	$\overline{A}B\overline{C}$	
0 1 1	3	m_3	$\overline{A}BC$	
1 0 0	4	m ₄	$A\overline{B}\overline{C}$	
1 0 1	5	m_5	$A\overline{B}C$	
1 1 0	6	m ₆	ABŪ	
1 1 1	7	m ₇	ABC	

And the K-Map of three variables is:

	$\overline{B}\overline{C}$ 00	$\overline{B}C$ 01	<i>BC</i> 11	<i>B</i>
<i>Ā</i> 0	0	1	3	2
<i>A</i> 1	4	5	7	6

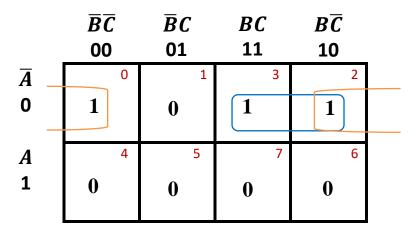
Example: simplify the Boolean expression by using K-Map

$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}BC + \overline{A}B\overline{C}$$

Solution:

Number of input variables are 3

Hence the number of squares $= 2^n = 2^3 = 8$



$$F(A, B, C) = \overline{AC} + \overline{AB}$$

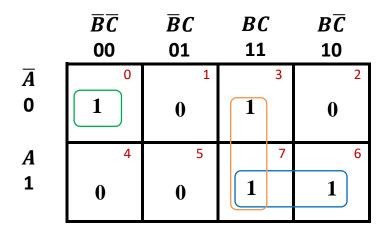
Example: simplify the Boolean expression by using K-Map

$$F(A, B, C) = \sum m(0, 3, 7, 6)$$

Solution:

Number of input variables are 3

Hence the number of squares $= 2^n = 2^3 = 8$



$$F(A, B, C) = \overline{A}\overline{B}\overline{C} + BC + AB$$

3- Four Variables K-map

Number of input variables are 4

Hence the number of squares $= 2^n = 2^4 = 16$

The truth table is

			uoic .				
	Inp	uts		Decimal	М	interms	Output
Α	В	С	D	equivalent			F
0	0	0	0	0	m_0	$\overline{A}\overline{B}\overline{C}\overline{D}$	
0	0	0	1	1	m_1	$\overline{A}\overline{B}\overline{C}D$	
0	0	1	0	2	m ₂	$\overline{A}\overline{B}C\overline{D}$	
0	0	1	1	3	m ₃	$\overline{A}\overline{B}CD$	
0	1	0	0	4	m ₄	$\overline{A}B\overline{C}\overline{D}$	
0	1	0	1	5	m_5	$\overline{A}B\overline{C}D$	
0	1	1	0	6	m ₆	$\overline{A}BC\overline{D}$	
0	1	1	1	7	m ₇	A BCD	
1	0	0	0	8	m ₈	$A\overline{B}\overline{C}\overline{D}$	
1	0	0	1	9	m ₉	$A\overline{B}\overline{C}D$	
1	0	1	0	10	m ₁₀	$A\overline{B}C\overline{D}$	
1	0	1	1	11	m ₁₁	$A\overline{B}CD$	
1	1	0	0	12	m ₁₂	$AB\overline{C}\overline{D}$	
1	1	0	1	13	m ₁₃	<i>AB</i> \overline{C} D	
1	1	1	0	14	m ₁₄	$ABC\overline{D}$	
1	1	1	1	15	m ₁₅	ABCD	

And the K-Map of four variables is:

	$\overline{C}\overline{D}$	<i>CD</i> 01	<i>CD</i> 11	$C\overline{D}$ 10
$\overline{A}\overline{B}$ 00	0	1	3	2
<i>ĀB</i> 01	4	5	7	6
<i>AB</i> 11	12	13	15	14
<i>AB</i> 10	8	9	11	10

Example: simplify the Boolean expression by using K-Map

$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}C\overline{D} + \overline{A}BCD + AB\overline{C}D$$

Solution: Number of input variables are 4

Hence the number of squares $= 2^n = 2^4 = 16$

		1		
	$\overline{\pmb{C}}\overline{\pmb{D}}$	$\overline{C}D$	CD	$oldsymbol{C}oldsymbol{ar{D}}$
	00	01	11	10
$\overline{A}\overline{B}$	0	1	3	2
00	1	0	0	1
$\overline{A}B$	4	5	7	6
01	0	0	1	0
AB	12	13	15	14
11	0	1	0	0
$A\overline{B}$	8	9	11	10
10	1	0	0	1
•				

$$F(A, B, C, D) = \overline{B}\overline{D} + \overline{A}BCD + AB\overline{C}D$$

Example: simplify the Boolean expression by using K-Map

$$F(A,B,C,D) = \sum m(0,2,4,6,12,14,15,8,10)$$

Solution: Number of input variables are 4

Hence the number of squares $= 2^n = 2^4 = 16$

	$\overline{C}\overline{D}$	<i>CD</i> 01	<i>CD</i> 11	$C\overline{D}$ 10	
$\overline{A}\overline{B}$	0	1	3	2	
00	1	0	0	1	
<i>ĀB</i> 01	1 4	0	0	1	
<i>AB</i> 11	1 12	0	15	1	
<i>AB</i> 10	1 8	0	0	10	

$$F(A,B,C,D) = \overline{D} + ABC$$

1st class Dr. Rasim Azeez

K-Map with Don't Care Conditions

In certain cases some of the minterms may never occur or it may not matter what happens if they do

- In such cases we fill in the Karnaugh map with an $\ X$ that meaning don't care
- When minimizing an X is like a "joker"
- X can be 0 or 1 whatever helps best with the minimization

Example: simplify the Boolean expression by using K-Map

$$F(A, B, C, D) = \sum m(3, 7, 9, 11) + \sum d(1, 5, 12, 14)$$

Solution: Number of input variables are 4 Hence the number of squares = $2^n = 2^4 = 16$

	$\overline{C}\overline{D}$	<i>CD</i>	<i>CD</i> 11	$C\overline{D}$ 10
$\overline{A}\overline{B}$	0	1	3	2
00	0	X	1	0
$\overline{A}B$	4	5	7	6
01	0	X	1	0
AB	12	13	15	14
<i>AB</i> 11	X	0	15 0	14 X
11	X	0	0	X

$$F(A,B,C,D) = \overline{A}D + \overline{B}D$$